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ABSTRACT 
Probability prediction is defined as the estimate of the conditional probability distiibution of the future given 

the past and present. Of principal interest are probability predictions for dichotomous random variables, i.e., variables 
assuming the value 1 (success) or 0 (failure), in which case the prediction is simply an estimate of the probability 
of success. 

Given certain assumptions on the distribution of the independent variables, the probability of a success is shown 
to  be a logit curve, a type of sigmoid. The maximum likelihood estimators of the parameters of the logit are obtained 
and compared with estimators obtained by non-linear regression techniques-both classical and a newer recursive 
method. A comparison is also made with a linear regression line, showing the conditions under which i t  provides an 
acceptable predictor. The comparisons are made by analysis of several types of simulated data, as well as by analysis 
of meteorological data. 

Binary events with continuous underlying variables (e.g., daily temperature exceeding its mean by k degrees) 
are also considered. The probability prediction is made by estimating the conditional distribution of the continuous 
variable and integrating over the region of interest. 

1. INTRODUCTION 
Let z be a random variable and z an observed value of 

an associated vector variable. We are interested in the 
probability structure of z. All information regarding z 
given by the observation is contained in the conditional 
probability distribution, F(z1z). We therefore define a 
probability estimate to be an estimate F(zlz) of the con- 
ditional probability distribution. In particular, this paper 
is concerned with probability estimation for dichotomous 
random variables, i.e., z=1 (success) or 0 (failure). For 
example, z might represent the occurrence or non-occur- 
rence of rainfall. 

A 

2. THE LOGIT MODEL 
Let z be a random variable chosen from one of two 

populations, j,, and ji, leading to  z=O and z=1, respec- 
tively, and let p=Pr (z=1) and p=l-p. Iffi=N(pt, 2) ,  
it may be shown that 

Pr (z=lJz)= 

which is of the form 
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This is the logistic response function, or logit, a symmetric 
sigmoid curve. It appears to be a reasonable model since, 
as a smooth function of z, Pr (z=llz) is bounded between 
0 and 1 and approaches these values as limits as z--+-+ a. 

3. THE DISCRIMINANT FUNCTION LOGIT ESTIMATOR 
This formulation of the problem was discussed by 

Cornfield, Gordon, and Smith [l], who use maximum 
likelihood estimates of CY and p .  Thus, 

b = s- I (  5, -Zo) 
a= -log (no/n,)-$ (Z,+Z,)’b. (3.1) 

S is the pooled estimate of the common covariance matrix 
2. The exponent in (2.1) is seen to be the linear discrimi- 
nant function and the estimates (3.1) are based on the 
sample discriminant function, so we will call this estimator 
the discriminant function logit estimator (DFLE). 

4. OTHER LOGIT MODELS 
Without the assumption of equal variances in the two 

cases, the exponent in (2.1) becomes the quadratic dis- 
criminant function, and its sample version is the difference 
between the Mahalanobis squared distances from the 
observation to  each sample. This yields a quadratic logit 
model. 

Suppose 3: has univariate gamma distributions, with 
parameters dependent on z=O or 1.  Then the model is of 
the form 

(4.1) 
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Thus, for gamma variables, the model includes both the 
variable x and its logarithm. 

bn=bn-l+ zn-lxn(Zn-gn) (5.5) 
5. REGRESSION MODELS 

known, or IL: is not a random variable at all. In such cases 
Often the distributions of x given z=O and z=1 are not 

The simplest regression model would be 

2,~,-12,+ [ g n (  1-&)]-’ ’ 
where 

Pr(z=lIx) may be estimated by regession methods. A 1 zn= l+e-“.b.-l. 

E( 2 Is) = 2’6, (5.1) 

where x1=1.  Here the estimates i = x ‘ b  will not be con- 
strained t o  lie between 0 and 1. This is similar to the 
Regression Estimation of Event Probabilities (REEP) 
procedure of Miller [6]. A second model is the logit dis- 
cussed above, i.e., 

1 
1 +e-”‘@ * 

E( 2 12) =- 

These models will be compared in section 6. 
The logit parameters may be estimated by non-linear 

Ieast squares. The function (5.2) is expanded in a Taylor 
series about an initial estimate b, with only the linear term 
retained. This leads to the “linearized” normal equations 

A 
X’[fi&X(P- b )  =X’fi& z-k), 

and 
A A 
&=I-P. 

(5.3) 

The parameters of logistic distributions can also be 
estimated using maximum likelihood by obtaining “lin- 
earized” normal equations 

6. COMPARISON OF LINEAR AND LOGIT MODELS 
Analysis of simulated data has been carried out to 

investigate the performance of the linear model (5.1) 
and the logit model (5.2) under varying conditions. 
Random variables x and y were drawn from a standard 
bivariate normal distribution with correlation p. The 
dichotomous variable z was then defined as 

z=1 ify>c 
=0 if y<c. 

Thus the true form of the response curve was the cum- 
ulative normal (probit). 

Both the linear and logit curves were estimated by the 
recursive technique mentioned previously. A sample size 
of 1,000 was used to  assure convergence. 

Figure 1 shows the results of a typical run. The cor- 
relation between x and y in this case was 0.9. The cut 
value e was I, giving an unconditional probability of a 
success of 0.1588. 

Figure 2 demonstrates the effects of the correlation and 
the cut value on the fitted curves. The logit provides a 
better approximation, especially in the tails, as c departs 
from zero. The straight line, however, becomes a rea- 
sonably close approximation over a range as lpl decreases. 

(5.4) 

which appears to be a weighted version of (5.3), except 
that the weights (@)--l are functions of the estimate b. 
We will use this form of the normal equations. 6 is then 

A n , .  
estimated by iteration, i.e., by using (8--6) obtained from 
(5.4) to improve the estimate b, and iterating until the 
correction term becomes sui3ciently small. Convergence 
is guaranteed only if the initial estimate b is “close enough” 
to  the true value p. 

Walker and Duncan [SI use a recursive technique to 
estimate P. Given an estimate bn-l based on n-1 observa- 

n 

- 
m 

a 
0 
LT 

I 

O 

-2 - I  0 I 2 

INDEPENDENT VARIABLE , .  
tions, the estimated covariance matrix zn-l=var @%-I) 7 

and the n-th observation (zn, zn), the estimates of P and 2 
may be updated as follows: 

F~~~~~ l.--(=omparison of linear and logit probability estimators 
for ,,= 0.9, e= 1, n= 1,000. The true probability function (dotted 
line) is a normal c.d.f. 
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FIGURE 2.-Linear and logit probability estimators for two values 
of p and c with n=1,000. The true probability function (dotted 
line) is a normal c.d.f. 

7. COMPARISON OF LOGIT ESTIMATION METHODS "[ I I 1 
-2 - I  0 

INDEPENDENT VARIABLE 
A second set of simulations was performed to  compare 

the DFLE, converged iterative, and one-pass recursive 

converged iterative estimate was considered t o  be the 
standard of comparison, since it provides the best fit 
to  the data. 

The results of two runs made on data satisfying the 
DFLE assumptions are shown in figure 3. Here 

logit estimators. A sample size of 100 was used, and the FIGURE 3.-Probability estimators for two sets Of data satisfying 
the DFLE conditions, with n= 100. 

and TABLE 1.-Convergence rates for iterative and retursive logit estimators 
for various starting values, p 

The DFLE is seen to  be very close to the iterative solution 
in both cases. 

Figure 4 shows curves resulting from analysis of gamma 
and uniform data, with the true response curve being the 
Pogit in each case. 

In  order to illustrate differences in rate of convergence 
for the iterative and recursive methods, consider again the 
data which resulted in the upper graph in figure 3. As our 
starting value in each case we take a horizontal line 
E(zls)=fi. The proportion of successes in this case was 
0.83. We are interested in the value of the coefficients 
after each iteration. In the recursive case the regression 
coefficients which resulted from the previous pass through 
the data were used as initial estimates for the next pass. 
For each pass the covariance matrix of the regression co- 
efficients was reset to the initial value used in the first pass. 
The results shown in table 1 show that the recursive 
method provides a reasonable estimate in one pass, and 
that the iterative method is particularly sensitive to 
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FIGURE 4.-Probability estimators, where the independent variable 
has a gamma distribution (top) and uniform distribution (bottom), 
with n= 1,000. The true probability function is a logit. 

starting values. A starting value too near 1 causes 
divergence. 

In  choosing an estimation method to use for a particular 
problem, several factors should be considered. The DFLE 
has the advantage of being the easiest to calculate and 
provides good estimates if the model is correct. The 
iterative method, if it converges, converges to themaximum 
likelihood estimate. Recursive estimation provides an 
updating feature which is especially useful in real-time 
situations. This allows the data to  be used as [[independent 
data” to judge performance in addition to its role in de- 
termining the coefficients. The recursive estimate converges 
reasonably well in one pass for a moderate sample size 
so that the data need not be retained. This is important 
in computer applications where data storage is limited 
or expensive. Finally, this estimate is relatively inde- 
pendent of the intial values of the coefficients. 

Combinations of the three methods should be con- 
sidered. The DFLE gives a good starting point, if some 
data are available. Iterative regression may be used to  
improve the initial estimate if the DFLE assumptions are 
not satisfied. Recursive estimation might then be used to  
update as more observations are obtained. At some point 

one may wish to stop and iterate over the data up to  that 
point, using either iterative or recursive methods. 

8. UNDERLYING VARIABLES 

Let z be a dichotomous raiidom variable with an 
observable underlying variable y, i.e. 

z=1 if ycR 

= O  otherwise, 

where R is some known region in y-space. For example y 
might be the ceiling height and R the set of all heights 
below 600 f t .  Given x, a probability estimate for z can be 
made based on the estimated conditional distribution of 
y given x, since 

E(z14=JR dF(Yl4. (8.1) 

In  meteorological problems these underlying variables 
will sometimes be approximately normally distributed. 
Others, such as amount of rainfall, can be transformed so 
as to be approximately normal. If we fit the linear model 

Y=xP+E 1 (8.2) 
, 

then, given x, the residual y--2’6 will be normally dis- 
tributed with mean zero and variance (1 +x’(X’X)-lx)u2. 
The problem is now reduced to that of estimating the 
normal c.d.f. a t  one or more points. For moderate or 
large sample sizes u2 may be replaced by its estimate sz 
and the integration may then be performed. 

I 
9. THE k-CHOTOMOUS LOGlT MODEL 

Suppose each trial results in the occurrence of one of k 
mutually exclusive events. A general extension of the logit 
to this problem was given by Cox [2]. Let 

z=(z1, . . *, Zt)’ 

be a vector denoting the result of the trial, with zm= 1 and 
zj=O for j f m .  Let 

e -’Bi 
E(z*lx)= k (9.1) 

e-z’f15 
j=1 

k 

j=1 
Sincexzj=l  we may arbitrarily set PI=:. For k=2 this 

reduces to the dichotomous model (5 .2 ) .  Estimation may 
be carried out by methods generalized from the di- 
chotomous case. 

If the events have a natural ordering, it is possible to 
reduce. the k-chotomous problem to k - 1 dichotomous 
problems by grouping the events. In this case only the 
slope coefficient is allowed to vary with the different group- 
ings (see Walker and Duncan [SI). 
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io. SCORING PROBABILITY FORECASTS 

Probability estimates or forecasts for the k-chotomous 
model may be compared by a loss function, h(z, z*). The 
Brier Score used in meteorology is essentially mean square 
error, i.e., it assigns a loss of C (zij- &)2 to the i-th trial 

(the subscript i will be used to denote the trial and j the 
event). The average loss for this loss function is minimized 
by the non-linear least squares estimate obtained from 
(5.3). 

Another natural loss function derived from information 
theory assigns a loss of -log bi,, where m is the event 
which occurred. Loss functions of this type have been 
used by Holloway and Woodbury[5], Suzuki [7], and others. 
It is important to note that for parametric probability 
models, this loss function is minimized by the maximum 
likelihood estimate of the parameters. The log likelihood 
of the sample is 

k 

j =  1 

L=A i: zij logpj(si)i (10.1) 
i = l  3=1 

where 
P h P )  =-qzijlZ*). (10.2) 

Maximum likelihood chooses the estimate of p which 
maximizes (10. l ) ,  thereby minimizing 

A loss function for which the average loss for the sample 
is minimized by the maximum likelihood estimator is 
thus 

For objective probability estimates, we prefer the infor- 
mation loss function for the following reasons: (1) For a 
finite sample, the average loss is minimized by maximum 
likelihood estimation. (2) The expected loss is minimized 
by the true probabilities and is equal to the entropy of the 
.distribution. (3) Estimates are constrained to the range 
0 5 b 5 1. A probability prediction of zero is unacceptable 
if the event occurs, since the loss would be + OD. 

11. METEOROLOGICAL EXAMPLES 
Several types of meteorological. data have been analyzed 

to further evaluate the practical effectiveness of the logit 
and underlying variable probability predictors. These 
predictors are compared with those obtained by linear 
regression and persistence. The persistence predictor, 
which is often used as a “minimum” standard of compari- 
son in probability forecasting, is simply the outcome at  
the preceding time point, 

(11.1) 

Since meteorological events often occur in runs, per- 
sistence frequently appears to perform reasonably well; 
clearly, to be worthwhile, a proposed predictor must do 
better. 

The loss function used to  compare predictors is mean 
square error, 

(11.2) 
1 1 2  h(z,  8)=, c (Zr-8J2, 

t= l  

since the information loss function of section 10 cannot be 
used to score persistence. If persistence were replaced 
by the zero-information probability predictor, ;=jj, 
where 5 is an estimate of the unconditional probability 
vector, as the standard of comparison, the information 
loss function could be used. 

In the following examples regression coefficients are 
estimated by the recursive techniques discussed earlier, 
enabling the sample to be used as an “independent sample” 
to measure performance. At each time point a prediction 
is made based on past data. The observation obtained 
at  that point is compared with the prediction, and then 
used to update the estimates of the coefficients. In  order 
to allow the coefficients to stabilize, the first 100 data 
points were excluded from the mean square error calcu- 
lations. 

In the first example, hourly weather data from the 
Atlantic City, N.J., airport were used to predict the 
probability of precipitation. Atmospheric pressure and dew 
point depression were the only relevant predictor variables 
available; the squares and cross product of these variables 
were also used. The first analysis, conditional on precipita- 
tion the preceding hour, showed the logit to be slightly 
better than linear regression and both better than persist- 
ence. The second, conditional on no rainfall, resulted in 
approximately equal results for the three predictors. In  
neither case were any of the regressors statistically signifi- 
cant. Deleting these regressors results in a Markov chain 
model, which is commonly used for predicting precipitation 
probabilities (see, for example, Eriksson [a], Feyerherm 
and Bark [4]). 

Attention was shifted to temperature data for Central 
Park in New York City. This consisted of daily minimum 
and maximum temperature readings for a 30-yr. period, 
1931-60. We wished to predict the probability that the 
maximum would exceed its daily mean or the minimum 
fall short of its daily mean by k degrees. Estimates of the 
daily means were obtained by averaging over the 30 yr. 
A bivariate series {z t }  was obtained by subtracting out 
these means. 

The specific problem considered in this example was of 
predicting the probability that the minimum temperature 
x2, would be 5” or more below its daily average, i.e., 

z,=1 if 52,t<-5 (11.3) 

=O otherwise. 
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FIGURE 5.-Distribution of residuals for underlying variable probability predictor, normalized by 
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current parameter estimates, with superimposed standard normal curve. 

TABLE 2.-ResuEts of ezperiment on minimum temperature 

z l - , = n  / I  z , - ,= i  

Sample size- __....____.. 800 / I  600 

-1.561 
-0.216 
-0.007 

0.032 
0. 020 
0. 002 

- 
-5.72 
-0.32 

1. 01 
0.92 
0.06 

Z2.t-3 ....__....._.. -0.014 -0.65 1 1  

0.2018 
,2041 
,4200 

Coeff. t 
-1.403 - 
-0.242 -6.56 
-0,095 -4.96 

0.187 6.14 
0.005 0.25 

-0.047 -1.90 
-0.008 -0.51 
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The variables used as regressors were the maximum and 
minimum temperatures for the preceding three days. Two 
conditional logit regression analyses were performed with 
the results shown in table 2. This and similar studies 
(e.g., predicting the probability that the maximum tem- 
perature exceeds its average by 10") show the logit to be 
consistently better than the linear model. 

Since the time series in question is approximately 
Gaussian, the underlying variable probability predictor 
should perform well in this case. This was done, using three 
lags of the bivariate series as predictor variables. The 
prediction was made a t  each point using current estimates 
of the parameters of the distribution obtained by recursive 
least squares. The distribution of the residuals, normalized 
by the current parameter estimates, is shown in figure 5 ;  
the first 100 points of the 1000 used are omitted. The 
underlying variable probability predictor had a mean 
square error of 0.1291, compared to 0.1956 for persistence. 



5 76 MONTHLY WEATHER REVIEW Vol. 95, No. 8 

REFERENCES 

1 .  J. Cornfield, T. Gordon, and W. W. Smith, “Quantal Response 
Curves for Experimentally Uncontrolled Variables,” Bulletin, 
International Statistical Institute, vol. 38, part 111, 1961, 

2. D. R. Cox, “Some Procedures Connected with the Logistic 
Qualitative Response Curve,” Research Papers in Statistics 
(F. N. David, Ed.), John Wiley and Sons, London, 1966. 

3. B. Eriksson, “A Climatological Study of Persistency and Prob- 
ability of Precipitation in Sweden,” Tellus, vol. 17, No. 4, 

4. A. M. Feyerherm and L. D. Bark, “Statistical Methods for 

pp. 97-115. 

NOV. 1965, pp. 484-497. 

Persistent Precipitation Patterns,” Journal of A p p l i e d  Mete- 
orology, vol. 4, No. 3, June 1965, pp. 320-328. 

5 .  J .  L. Holloway, Jr. and M. A. Woodbury, “Application of 
Information Theory and Discriminant Function Analysis 
t o  Weather Forecasting and Forecast Verification,” Technical 
Report No. 1, Meteorological Statistics Project, University 
of Pennsylvania, 1955. 

6. R. G. Miller, “Regression Estimation of Event Probabilities,” 
Technical Report, Travelers Research Center, 1964. 

7. E. Suzuki, “Weather Forecast and Entropy in Information 
Theory,” Papers in Meteorology and Geophysics, Tokyo, vol. 
9, No. 2, Dec. 1958, pp. 51-62. 

8. S. H. Walker and D. B. Duncan, “Estimation of the Prob- 
ability of an Event as a Function of Several Independent 
Variables,” Biometrika, vol. 54, 1967, pp. 315-327. 

[Received April 19, 1967; revised May 25, 19671 


